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Abstract—In the era of 5G and the upcoming 6G, current
software stacks are ineffective when it comes to intelligent and
fast decision-making, which necessitates the need for sustainable
yet performant and scalable solutions. A significant amount of
research has been done in this area, but an end-to-end solution
was lacking. In this scope, we identify that we need a novel
software stack which can handle the growing need for a vast
amount of data generation with the help of the cloud-edge
continuum, swarm programmability, along with secure deploy-
ments of applications. In this context, we propose OASEES, an
architectural framework for a decentralised AI/ML computing
stack that unifies diverse computing resources, peer-to-peer coor-
dination protocols, and secure middleware. Our design outlines
modular different compute infrastructures(CPUs, GPUs/TPUs
and custom ASICs) orchestrated by a lightweight container-
based runtime and governed by a blockchain-enabled tamper-
proof data storage, decentralised coordination (decentralised
autonomous organisation, voting, etc) to facilitate transparent
discovery, allocation, and incentivization. We also propose a
detailed performance and scalability metrics framework covering
latency, throughput, resource utilisation, and cost-per-inference,
intended as the foundation of subsequent evaluations.

I. INTRODUCTION

The accelerating convergence of cloud computing, edge intel-
ligence, and specialised AI hardware has catalysed a paradigm
shift in how intelligent services are conceived, deployed,
and managed across diverse industrial and societal sectors
[1], [2]. This trend has opened unprecedented opportunities
for enabling real-time, distributed intelligence across domains
such as manufacturing, energy, healthcare, and smart cities.
However, as digital systems scale and diversify, traditional,
centrally governed infrastructures—designed around static
provisioning and uniform control—are proving inadequate for
meeting the demands of a sustainable, sovereign, and circular
digital economy [3].
Specifically, emerging operational and regulatory requirements
expose critical limitations in current architectures related to
data sovereignty [4], multi-tenant interoperability [5], and dy-
namic resource orchestration [6]. Rigid and monolithic AI/ML
pipelines lack the agility to adapt to fluctuating computational
workloads, geographic distribution constraints, and evolving
privacy and compliance regulations. These constraints present
a growing barrier to strategic ambitions to retain control over
its data assets and to promote digitally and environmentally
responsible value chains.
Against this backdrop, the OASEES project (Open autonomous
programmable cloud apps & smart sensors) aims to funda-

mentally rethink the architecture and operational models for
distributed AI/ML systems. It envisions a federated, yet co-
herent, computing fabric that spans the cloud-edge continuum
and is capable of adapting to diverse contexts through de-
centralised coordination, swarm programmability, and policy-
aware orchestration. The approach abandons one-size-fits-
all deployment strategies in favour of a modular, scalable
framework [7].
A central tenet of the OASEES project is native support for
heterogeneous computing hardware—from general-purpose
CPUs and accelerators like GPUs/TPUs to domain-specific
AI ASICs. Within this ecosystem, the discovery, allocation,
and accounting of resources must be not only secure and
transparent but also aligned with incentive mechanisms that
ensure equitable stakeholder participation. Such capabilities
directly support the stakeholders’ data sovereignty directive
while enabling the deployment of privacy-preserving, fault-
tolerant, and energy-efficient AI services tailored to local and
cross-border needs.
To realise this vision, OASEES proposes a modular decen-
tralised AI/ML computing stack composed of three key pillars:

1) Heterogeneous compute nodes integrated with AI accel-
erators for adaptable workload execution;

2) A lightweight container-based runtime that orchestrates
workload placement and lifecycle management across
cloud and edge environments; and

3) A blockchain-enabled system that governs, decentralised
autonomous organisation, voting and resource discovery,
tamper-proof storage and incentive-driven governance,
etc.

To support empirical validation and benchmarking of such
decentralised architecture, we also propose a comprehensive
performance and scalability metrics framework that includes
latency, throughput, resource utilisation, scalability, fault-
recovery overhead, and cost-per-inference. This evaluation
strategy is designed to guide performance optimisations and
facilitate cross-platform comparisons, ultimately contributing
to a standards-based, federated AI infrastructure aligned with
sustainable environmental and digital goals.

II. RELATED WORKS

The rapid evolution of IT and network infrastruc-
tures—accelerated by the advent of 5G and beyond—has
catalysed the emergence of several platforms focused on the



management and orchestration of edge infrastructure and
services [?], [8]–[10]. These include proprietary, standardised,
and open-source systems that address specific layers of
the edge-to-cloud continuum. A variety of orchestration
frameworks have emerged, including those aligned with
cloud-native principles, NFV MANO frameworks [11],
[12], Software Defined Networking (SDN) controllers [13],
and edge-focused platforms for IoT [14]–[16]. Despite
these advances, the current orchestration ecosystem remains
fragmented and siloed, with most solutions optimised for
either cloud, network, or device-level orchestration, rather
than the full continuum [17]. Managing compute resources
across the continuum-spanning from high-performance data
centres to low-power edge devices. This requires efficient
lifecycle orchestration. As outlined in [18], [19], this involves
several critical phases: registration and discovery, scheduling
and placement, runtime management and scaling, etc.
OASEES adopts this lifecycle but advances it with an edge-
first perspective [20]–[23], deploying models via lightweight
containers to minimise startup latency and footprint. Its
orchestrator balances conflicting objectives such as inference
latency, network cost, and energy consumption.
Runtime scaling mechanisms integrate fine-grained teleme-
try—covering CPU, memory, power, and inference through-
put—to trigger horizontal (replication-based) or vertical (re-
source augmentation) scaling.
Scalable decentralised architectures must accommodate multi-
actor, multi-domain operations where resource ownership, pol-
icy, and trust boundaries vary. Several efforts—including the
European Open Science Cloud (EOSC) [24]—are advancing
this vision by federating independently managed infrastruc-
tures, offering marketplaces for data, services, and compute
capabilities. Within OASEES, secure federation is enforced
via trusted communication channels, resource certification, and
runtime attestation. It supports monetisation and capability
exchange across administrative domains, aligning with decen-
tralised economic models such as data/token marketplaces and
AI model licensing.
The scalability and performance of decentralised systems have
been studied across dimensions such as latency, throughput,
resource elasticity, membership growth, and network overhead
[25]. For example, systems like EdgeX Foundry [26] and
KubeEdge [27] have demonstrated horizontal scaling across
edge clusters, though with challenges in consistent service dis-
covery and data propagation. In terms of metrics, latency (e.g.,
time to respond to inference or control requests), throughput
(requests per second), and scalability efficiency (performance
as resources increase) are widely used [25]. Energy efficiency
and cold-start latency (especially relevant for AI workloads)
are gaining prominence [25]. Moreover, resource orchestration
overhead, consistency guarantees, and state synchronisation
times are critical when designing truly decentralised platforms.

III. MOTIVATION

The OASEES project involves six use cases [7]. The main
challenge of OASEES is not to be too case-specific. The main

requirement of the project is to be use case agnostic, and we
should still be able to map the stack to every use case.
One of the use cases concerns high-mast inspection using a
swarm of drones. This use case enables high-mast inspection,
leveraging a fully decentralised swarm architecture. The infras-
tructure and operation of this use case can scale dynamically
to accommodate many (in the order of 100) drones, ensuring
flexibility in adapting to varying requirements. The technolo-
gies involved for this use case are drones, NG-RAN, etc.
There are several research projects which involve drones and
inspection, such as 5G!Drones [28], Drones4Safety [29]. The
main criterion of this use case is to find faults in high masts.
For that, we use some state-of-the-art object detection model
which will be run in a drone fitted with power power-efficient
AI accelerator. The main challenge here is to orchestrate the
workload in such a way that we can have a faster inference
of captured images, which will also be energy efficient.
Similarly, other use cases have their own performance and
scalability requirements, which makes the performance eval-
uation complicated and makes taking a scalability decision
harder. To this end, we provide an architecture which can be
mapped to all the use cases and more and a performance and
scalability metrics framework to evaluate such decentralised
systems.

IV. DECENTRALIZED ARCHITECTURE

OASEES adopts a decentralised-by-design paradigm for
swarm intelligence, grounded in distributed ledger technology
and blockchain, which enables the recording of immutable
transactions and achieves consensus across all nodes. Smart
contracts underpin the decentralised applications (DApps)
[30], while Decentralised Autonomous Organisations (DAOs)
orchestrate device-level proposals and votes for agile, auto-
mated governance. A cloud-native CI/CD pipeline facilitates
rapid development, testing and edge deployment of intelli-
gent services. Security is reinforced by a dedicated Identity
Layer—a Self-Sovereign Identity (SSI) model [31] that man-
ages DAO membership and access via verifiable credentials,
thereby preserving privacy and enforcing distinct security
zones. The OASEES framework involves the following dif-
ferent actors with associated roles,

1) Infrastructure Providers (IP) supply and orchestrate de-
vices—whether cloud, network or edge—for OASEES to
build atop.

2) Specialists process OASEES data or engage with DApps
via smart contracts, enabling human-in-the-loop decision-
making.

3) Developers consume services to create OASEES work-
flows or author DApps and smart contracts for DAO
deployment.

4) Data Consumers (OASEES users) utilise service out-
puts—e.g. patients accessing support applications.

5) OASEES Service Providers (swarm operators) manage the
portal, coordinate underlying infrastructure and deliver
DApps to users.
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Fig. 1: Key Layers of OASEES Architecture

The OASEES architecture leverages decentralised infrastruc-
ture by integrating swarm intelligence, distributed ledger tech-
nology (DLT), and blockchain to enable secure data exchange
and collaboration. It adopts a layered, modular, and extensible
design to streamline interactions among the core components
of the system, allowing for the seamless addition of new
services and APIs. Fig-1 shows the OASEES architecture in
detail.

A. Deployment and Execution Layer

At the foundation of OASEES lies the Deployment and Execu-
tion Layer, which encompasses the physical edge and cloud in-
frastructure—including different kinds of sensors, accelerator
hardware, networking, storage, and Distributed Ledger Tech-
nologies (DLT) systems—along with their associated manage-
ment functionalities. This layer also includes the OASEES
portal, which serves as the primary access point for provision-
ing swarm services. Infrastructure orchestration facilitates the
coordinated management of heterogeneous IoT–edge–cloud
environments, while OASEES agents deployed on edge nodes
and smart devices support efficient resource allocation.

B. Federation Layer

Above the deployment layer, the Federation Layer enables
multi-instance deployments within federated cloud service and
data space frameworks. Aligned with Gaia-X principles, it
bridges infrastructure and data ecosystems, supporting reg-
ulatory compliance, federated governance, and secure data
exchange. OASEES operates as both an infrastructure and
data service provider, employing edge-aware brokerage mech-
anisms to enhance collaboration and resource sharing. Its

integration with the European Open Science Cloud (EOSC)
allows it to contribute services and added value through
monitoring tools and helpdesk support.

C. Identity Layer

The OASEES platform aims to establish a secure and trustwor-
thy edge ecosystem through a decentralised approach, primar-
ily leveraging Self-Sovereign Identity (SSI) technologies for a
portable digital identity that relies on decentralised authorities.
Central to this initiative are Decentralised Identifiers (DIDs)
[32] and Verifiable Credentials (VCs), which ensure per-
sistence, global resolvability, cryptographic verifiability, and
decentralisation. DIDs, standardised by the W3C [33], allow
for self-sovereign control over digital identities, providing a
persistent and globally resolvable means of identification. VCs
complement DIDs by enabling the cryptographic verification
of credentials, ensuring that digital identities remain authentic
and tamper-evident. Within the OASEES framework, the Iden-
tity Layer is fundamental in managing digital identities and
access control, providing the necessary tools to create, manage,
and verify these identities securely. This layer supports two
SSI approaches, one for devices and another for human users,
and the second one to cater to the unique requirements of IoT
and edge devices as well as human actors. This dual approach
ensures a resilient and interoperable identity infrastructure,
facilitating decentralised interactions across the ecosystem.

D. Service Layer

The Service Layer provides the foundation for developing
and deploying DApps, which comprise microservices and
smart contracts. Microservices leverage traditional cloud and



edge infrastructures, whereas smart contracts operate on DLT
platforms. Oracles within this layer enable communication
between smart contracts and external data sources, thereby
bridging decentralised and conventional computing environ-
ments.

E. Distributed Swarm Layer

This layer focuses on the key OASEES concept of the De-
centralised Autonomous Authority(DAO) [34] as a framework
to regulate interaction between multiple parties, including
humans and/or swarms of devices. The DAO, equipped with
human-in-the-loop (HTTL) mechanisms, facilitates resource
management incentives and decision making for swarm collab-
oration. Users interact with the DAO through digital wallets,
token staking, voting on proposals and receiving rewards.

F. Programming Layer

Finally, the Programming Layer provides tools for developers,
including support for Unified Development Notebooks and
accelerator APIs. The architecture also anticipates integration
with the Eclipse QRISP quantum development kit [35] for
future deployment within DApps accessible via the OASEES
portal. In short, it encompasses OASEES SDK, which includes
CLI support, OASEES notebook, the Rapid Development Kit,
MLOps, and external API support.

V. COMPUTE, NETWORK AND STORAGE
INFRASTRUCTURE

The OASEES platform provides support for managing both
virtual machines and containers at the network edge, en-
abling flexible and scalable edge computing capabilities. It
is designed to work with a variety of platforms (x86,Arm),
allowing deployments to be tailored to specific workload
requirements, ranging from lightweight IoT devices to data-
intensive edge analytics. A key feature of the platform is its
orchestration layer, which automates application and virtual
machine deployment, scaling, and lifecycle management. This
automation reduces administrative complexity and ensures
that infrastructure remains responsive under dynamic work-
load conditions. Cloud infrastructure in OASEES is managed
primarily through Kubernetes (K8S) clusters [36]. To better
support edge deployments, the platform leverages K3S [37],
a lightweight Kubernetes distribution, and KubeEdge [27], an
extension that brings Kubernetes orchestration to edge nodes.
Additionally, support has been provided to abstract hardware-
level complexities by providing a unified interface for edge de-
vices, further simplifying device discovery and interaction. To
streamline service deployment on Kubernetes-based clusters,
the OASEES project extends the native Kubernetes API. This
extension enables developers to efficiently deploy, manage,
and scale services, while automation tools handle tasks such
as service distribution, load balancing, and service discovery.
Network connectivity between OASEES clusters is achieved
using Software-Defined Networking (SDN) and Software-
Defined Wide Area Networking (SD-WAN) technologies.

These approaches decouple control logic from hardware, en-
abling more flexible, programmable network management.
Virtual networks can thus be tailored to meet the specific
needs of running applications, providing isolation, security,
and performance guarantees. The SDN/SD-WAN component
of OASEES focuses on several core functionalities: 1) Utilises
tools such as Kubernetes Node Feature Discovery (NFD)
and custom scripts to identify hardware/software capabilities.
2) Captures metrics including CPU, memory, storage, and net-
work interfaces for optimal service placement. 3) Exposes this
information via the OASEES SDK, enabling developers to tar-
get deployments without low-level device knowledge. 4) Auto-
matically configures edge node network settings, including IP
addressing, routing protocols, and secure communication links.
5) Tailors network configurations for resource-constrained
edge agents using low-power communication protocols such
as MQTT [38] and 5G RedCap [39]. 6) Prioritises secure,
bandwidth-efficient operation in power-sensitive environments.
7) Coordinates services and resource allocation across multiple
node clusters (swarms). 8) Ensures high availability, fault-
-tolerance, and efficient workload distribution. 9) Maintains
service continuity in the face of cluster partitioning or failure.
The OASEES stack is designed to integrate low-power IoT
protocols such as 6LoWPAN, enhancing device connectivity
in resource-constrained environments. Specifically, Low Rate
Wireless Personal Area Networks (LR-WPAN), compliant
with the IEEE 802.15.4-2003 standard, provide cost-effective,
energy-efficient communication for sensor networks and other
embedded systems. The 6LoWPAN protocol further extends
this by assigning IPv6 addresses to individual nodes, thereby
enabling direct Internet connectivity and scalable network
management. Moreover, support for 5G New Radio Reduced
Capability (NR RedCap) technology is integrated to facilitate
reliable and low-latency communication for emerging appli-
cations, including drones, wearables, and industrial automa-
tion systems. By balancing throughput, latency, and power
consumption, 5G RedCap provides robust connectivity for
real-time data transmission and remote control operations in
industrial IoT environments.
For OASEES, we use IPFS (InterPlanetary File System) [40],
which is a peer-to-peer protocol that enables data storage,
sharing, and retrieval across a decentralised network instead
of relying on a central server. It ensures efficiency, security,
and data integrity by assigning each file and its blocks a
unique content identifier (CID) based on its contents. Any
change to the file alters its CID, allowing version con-
trol and easy integrity checks. Data in IPFS is distributed
across multiple nodes, eliminating single points of failure
and ensuring availability even if some nodes go offline. IPFS
complements OASEES by offloading large data storage while
leveraging the blockchain’s immutable ledger. This enhances
DApps and DAOs with improved efficiency, cost savings, and
transparency, especially for oracles. By storing file hashes on
the blockchain, anyone can retrieve and verify data from IPFS.
Additionally, ERC721 [41] tokens can reference metadata
(images, videos, etc) stored in IPFS via CIDs, keeping tokens
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lightweight while linking to external data securely.

VI. REFERENCE USE CASE

To facilitate the identification and evaluation of system com-
ponents, we propose a reference use case to elucidate the
involved processes and the functionality of each layer of
the OASEES platform. For this, we consider a swarm of
entities that work collaboratively to accomplish a specific
task. Each entity has a predefined role in the operation but
retains the autonomy to act independently and participate in
various events within the swarm system. To facilitate their
involvement, the agents interact through an OASEES DAO,
which enables them to cooperate in a trusted manner on top
of a smart contract stack on DLT, without being limited by the
number of participating entities or the scale of data involved.
The entire process flow involving the OASEES platform stack
is as follows,

A. DAO Creation

The creation of a DAO on the OASEES platform is a founda-
tional step in enabling any swarm-based use case. This process
begins with the user (admin) installing the OASEES Software
Development Kit (SDK) on the designated master node and de-
ploying the OASEES runtime stack on the target edge node. To
support rapid onboarding, the system is designed for minimal
setup time, ensuring a streamlined deployment process. Once
the setup is complete, the administrator initiates the creation of
a DAO, which subsequently governs the entire swarm system.
The DAO logic is defined, compiled, and deployed using
the Unified Development Notebook, a core component of the
programmability layer. This environment provides seamless
support for writing, testing, and deploying smart contracts that
form the operational backbone of the DAO. Upon compilation
and deployment to the blockchain, these smart contracts serve
as the backend infrastructure for the DAO’s interface and
functionality, as depicted in Fig. 2. Several critical interfaces
are established to ensure full integration and programmability
within the OASEES ecosystem:

1) DAO–Notebook Interface: Enables developers to pro-
gram, debug, and deploy DAOs and their associated smart
contracts using the unified development environment.
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2) DAO–Portal Interface: Acts as the primary user-facing in-
terface to interact with the DAO, allowing administrators
to add users, register devices, and manage permissions.

3) DAO–Identity Provider Interface: Supports authentication
and verification of users and devices through integration
with trusted identity providers.

4) DAO–DApp Interface: Connects the DAO to its con-
stituent decentralised applications (DApps), which can
be implemented as on-chain smart contracts or off-chain
cloud/microservices (e.g., RESTful web services).

5) DAO–Oracle Interface: Facilitates interaction between
on-chain and off-chain environments, enabling data ex-
change via oracles to incorporate external information
into smart contract execution.

B. Joining Workers

Once DAO is created in the portal, edge nodes must be
added to it. This requires edge nodes to be added as worker
nodes to the Kubernetes platform. For this, the OASEES SDK
CLI utility is installed on each edge device, which joins
the master node using the typical Kubernetes worker node
provisioning procedure. When the devices join the cluster, the
node agent utilities of OASEES are installed automatically.
This is illustrated in Fig-3.

C. Adding Edge Devices as DAO Members

Once edge devices have been added as worker nodes to the
Kubernetes cluster, the devices are visible from the OASEES
portal front interface, and users can onboard them as DAO
members and provide them with voting tokens by performing
a transaction to the smart contract of the DAO. That is
responsible for distributing voting tokens. (Fig-4)

D. Training ML Models

Given the number of worker nodes, as well as a decentralised
storage infrastructure (IPFS), users can now train models
using data collected from edge devices. They can tweak
hyperparameters through the Unified notebook interface in
the OASEES stack or transfer learning through a pre-trained
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model. Both approaches are supported by the Unified Note-
book and OASEES SDK. This is illustrated in Fig-5. Primarily,
the training is supported by two popular frameworks, PyTorch
and TensorFlow. Through the OASEES SDK, the primary
support is one or multi-GPU training and federated learning.
Complicated training methods such as FSDP [42] are not yet
supported.

E. Deploy ML Model

Once training is complete, users can deploy the model on
an edge accelerator platform using the SDK and deployment
interface. The platform could be anything from x86 to ARM,
but the OASEES SDK abstracts the complexities, so users
don’t need to worry about platform-specific issues details.
After the deployment, edge devices can process real-time data
input and perform inference on the data. Those inferences are
collected in real-time and can be stored on IPFS. (Fig-6)

F. DAO Interaction

The DAO and its core smart contract counterparts can enable
the voting procedure between users and devices. Users are
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notified of the proposal’s existence and their status through
the DAO front interface of the OASEES portal, and devices
are notified by the event emitter, which is implemented in the
DAO smart contracts. (Fig-7)
A typical reference workflow interacting with the DAO might
be the following,

1) Pre-train a simple CNN classifier (ResNet50 [43],
YoloV8n [44] etc) with the any image dataset (for ex-
ample MNIST [45], ImageNet [46] etc.).

2) Use OASEES unified notebooks to deploy them on edge
devices.

3) Gather images from different sensors.
4) Model produces output predictions with a confidence

level
5) If the confidence level is below a predefined threshold

for a specific sample, it is stored to IPFS and a proposal
is created that contains the ipfs hash of the specific
sample and the prediction of the specified device.

6) Other devices fetch the sample using ipfs hash and
perform inference on this specific sample and cross-check
with predictions.

VII. PERFORMANCE METRICS FOR OASEES STACK

Initially, the OASEES stack and SDK must be set up
quickly and efficiently, supporting a multi-node configuration
that allows the Unified Notebook to execute tasks rapidly.
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Performance Metrics Definitions
Proposal latency Time taken to process proposals
Proposal throughput Number of proposals processed per second
Participation rate Percentage of stakeholders voting
Decentralisation Distribution of voting power
Transaction latency Time taken to finalise a transaction
Transaction throughput Number of transactions per second
Finalisation rate Speed of reaching final decisions
On-boarding time Time required to onboard a device
Reporting time Time taken to report device issues
Data Access Time Time taken to retrieve data
Resource Utilisation Efficiency of resource use

TABLE I: Performance Metrics for Distributed Swarm Layer

At the same time, the underlying blockchain must scale to
handle a high volume of nodes and requests. Additionally, the
portal is required to synchronise with ongoing events—such
as the addition of new nodes—and maintain a swift response
time, even when managing multiple sessions for the same
user. In the realm of decentralised machine learning, training
should conclude within a reasonable timeframe and achieve
acceptable accuracy, while continuously monitoring edge de-
vices for resource usage is essential. Once deployed, nodes are
expected to gather real-time data and perform inference imme-
diately, with the results stored in IPFS to ensure both prompt
data retrieval and high availability. Finally, DAO operations,
including voting and proposal management, must be robust
enough to support high concurrent user activity and large
data volumes, ensuring that the network can efficiently handle
increasing traffic. Key sub-points include efficient resource
management, rapid synchronisation, and real-time processing.

A. Distributed Secure Swarm Layer

A swarm of agents collectively performing tasks that typically
require some form of intelligence without central control is
known as swarm intelligence. Swarm intelligence in the frame
of OASEES is a process where a group of edge devices
and, in specific cases, human specialists work together to
achieve a common goal, using decentralised technology to
enable participation, coordination, and governance. Swarm
computing is characterised by the following attributes for
OASEES, 1) Self-organisation in swarms refers to the process
by which a group of simple agents or entities organises itself
into complex, structured patterns or behaviours without any
central control. Instead, these entities follow simple rules and
interact locally with one another, leading to the emergence of
global order or intelligent behaviour. 2) Decentralisation in
swarms refers to the lack of a central controlling entity or co-
ordinator within the system. Rather than having a simple entity
make decisions for the entire system, each agent participates
in the decision process. This swarm computing system, the
absence of a centralised control point, allows for a robust and
flexible architecture. Each node, whether a sensor, device, or
computational unit, operates based on local rules. This local
autonomy enables the swarm to self-organise and adapt to new
tasks without waiting for instructions from a central authority,
making it highly resilient to single-point failures and capable
of continuous operations despite uncertainties or changes in

Performance Metrics Definitions
latency Time taken to serve one request
Throughput Number of requests served in one second

TABLE II: Performance Metrics for Service Layer

the network. The Table-I summarises key performance metrics
pertinent to the Distributed Swarm Layer. It encompasses
proposal and transaction latencies and throughputs, which
respectively measure the time to process proposals or finalise
transactions and the number handled per second. Participation
rate and decentralisation gauge stakeholder engagement and
the evenness of voting power distribution. Finalisation rate
indicates how swiftly decisions are reached, while onboarding
and reporting times reflect the duration to onboard devices
and report their issues. Finally, data access time and resource
utilisation assess the efficiency of data retrieval and overall
resource usage.

B. Service Layer

The layer plays a pivotal role in the operational management
of decentralised applications (DApps) deployed over the het-
erogeneous and geographically distributed resources of the
cloud-edge continuum. This layer acts as an intermediary
abstraction that provides the necessary runtime environment
and management capabilities for DApps, enabling dynamic
deployment, lifecycle control, monitoring, and fault-tolerant
operations. From a systems perspective, DApps require ro-
bust orchestration mechanisms to function effectively across
diverse infrastructures, often characterised by varying laten-
cies, bandwidth capacities, and computational resources. The
Service Layer addresses these challenges by offering stan-
dardised APIs and toolchains that abstract the underlying
complexity and heterogeneity of the infrastructure. It builds
upon the foundational capabilities offered by the Deployment
and Execution Layer, leveraging its functionalities to manage
service placement, resource provisioning, and execution con-
sistency across the continuum. Furthermore, the Service Layer
ensures seamless orchestration of services by dynamically
adapting to changes in resource availability, user demand,
and network conditions. This dynamic adaptability is critical
in edge-centric scenarios where nodes can be ephemeral or
resource-constrained. In this context, latency and throughput
emerge as essential performance indicators. Table-II provides
a consolidated view of these key performance indicators.

C. Identity Later

The Identity Layer within the OASEES framework constitutes
a foundational component for enabling secure and trustworthy
interactions among heterogeneous entities across the cloud-
edge-IoT continuum. It is responsible for the creation, manage-
ment, and verification of digital identities, a critical capability
in distributed systems where multiple human users, services,
and IoT devices must interoperate seamlessly while preserving
security and privacy.
In decentralised and edge-oriented environments, traditional
identity and access management (IAM) models often fail to



Performance Metrics Definitions
Latency Time taken to process authentication
Cryptogenic Performance Time to generate new DIDs for each agent

TABLE III: Performance Metrics for Identity Layer

meet the requirements for scalability, autonomy, and data
sovereignty. To address these limitations, the Identity Layer in
OASEES leverages Self-Sovereign Identity (SSI) paradigms,
offering distinct implementations tailored to the characteris-
tics of two key entity classes: human users and IoT/edge
devices. For human users, SSI provides privacy-preserving
identity management mechanisms, empowering users to con-
trol their credentials and selectively disclose information,
in compliance with privacy regulations such as GDPR. For
devices, the framework supports lightweight and autonomous
identity provisioning methods, designed to accommodate the
constrained computational and storage capabilities typical of
edge and IoT nodes. This dual-SSI approach ensures that
identity management remains flexible, secure, and context-
aware, enabling fine-grained access control, secure service
discovery, and robust authentication protocols across layers.
Given the critical role of the Identity Layer in securing
the system’s operational integrity, it is necessary to assess
its performance using relevant technical metrics. Table-III
summarises key performance indicators for a representative
identity management use case.

D. Deployment and Execution Layer

Resource management plays a critical role in the OASEES
framework. The deployment and execution layer is responsible
for orchestrating application services across a heterogeneous
environment that involves IoT-to-edge-to-cloud infrastructure.
They leverage mobility and quality of service (QoS) meta-
information provided in the service description to perform
tasks such as provisioning, upgrading, recovering, migrating
and tear-down of application services are potentially driven
by intelligence-enabled control loops. Edge computing infras-
tructure introduces additional challenges to orchestration, as
the involved resources exhibit heterogeneity and volatility, and
increases the number of deployment units that need to be man-
aged. To this end, the Deployment and Execution Layer will be
evaluated across twelve key performance metrics (Table-IV).
Portal responsiveness is measured by loading time and RAM
consumption, while user experience is further characterised
by maximum session duration. AI hardware performance is
assessed via inference latency and model deployment time,
alongside overall AI model quality, encompassing accuracy,
precision and recall. Resource efficiency is quantified through
hardware utilisation, energy consumption during training and
inference. Edge-level processing is monitored by device la-
tency, and long-term maintainability is ensured via firmware
update compatibility. Finally, network stability and capacity
are tracked through connectivity reliability and bandwidth
utilisation.

Performance
Metrics

Definitions

Portal Loading Time Time to load and synchronise the portal
User session duration Ability to handle longer length of user session
Portal RAM Usage Memory usage of the portal
AI hardware latency Time to process an inference by AI hardware
Deployment time time to deploy a DL process at hardware
AI model accuracy Accuracy, precision and recall of the AI model.
Resource Usage Hardware utilisation during training/inference
Energy consumption Energy consumption due to training/inference
Edge device latency delay incurred due to edge processing
Firmware support Compatibility with newer updates
Network connectivity Stability of the network connection
Network Bandwidth Bandwidth usage of the network

TABLE IV: Performance Metrics for Deployment and execu-
tion Layer

E. Programmability Layer

We track five metrics that together capture both developer
experience and runtime efficiency. First, Notebook Loading
Time measures how long it takes for the unified development
notebook to become fully interactive on an edge device.
In typical settings, this ranges between 10s and 25s. These
numbers are heavily dependent on system load and network
stability.
Second, Inference Time captures the average latency from
when an input is submitted until the model’s prediction is
returned. For example, across a suite of vision models, we
observe mean inference times of 10ms to 30ms for lightweight
models and 60ms to 100ms for more complex models. These
numbers are very much dependent on the AI model in test,
concurrency, system load, etc.
Third, Model Warm-Up Time denotes the preparatory interval
from model instantiation through weight loading and runtime
initialisation up to the first inference. In our experiments,
warm-up times vary from 800ms on high-end edge servers to
1.5s on resource-constrained devices, reflecting the trade-off
between portability and startup responsiveness.
Fourth, we quantify Resource Utilisation—the CPU, GPU, and
memory footprint of inference operations—to ensure efficient
hardware use.
Finally, SDK Setup Time encompasses the total duration
required to install and configure the software development
kit, deploy AI application artefacts, and initialise the model
runtime. End-to-end, setup completes in roughly 250s to 500s,
depending on network speed and edge device I/O speeds.

Performance Metrics Definitions
Notebook loading time Loading time of unified notebook in the

agent’s device
Inference time Average inference time
Model Warm-Up time Warm-up time for model deployment
Resource utilisation Resource utilisation due to inference
SDK Setup time Time required to set up SDK, AI App, and

deploy model

TABLE V: Performance Metrics for Programmability Layer



Scalability Metrics Definitions
Network Scalability Increase in network traffic should be handled
Member growth rate Continuous and sudden growth in membership
Horizontal Scalability Increase performance in compute resources
Vertical scalability Increase in number of computational resources

TABLE VI: Scalability Metrics for OASEES stack

VIII. SCALABILITY METRICS FOR OASEES STACK

Table-VI summarises four key scalability metrics for decen-
tralised systems. In OASEES, scalability is engineered as a
multi-dimensional capability woven into every layer of the
stack. At the network level, the system employs adaptive
traffic steering and distributed service gateways so that as
the volume of incoming requests grows, edge and cloud
nodes collaboratively balance load without any single link or
node becoming a bottleneck. This ensures that the end-to-end
request latency remains stable even under surging demand.
At the membership level, OASEES is designed for dynamic
peer participation. New nodes—whether user devices, IoT
sensors, or micro-data centres—can join or leave the network
seamlessly. A lightweight discovery protocol updates routing
tables and service registries in real time, absorbing both
gradual roll-outs and sudden spikes in participant numbers
without manual reconfiguration.
From a horizontal or scale-out perspective, services in
OASEES are packaged as containerised microservices orches-
trated by a distributed scheduler. When compute requirements
rise, the scheduler transparently spins up additional instances
across available edge or cloud nodes, redistributing work
and state via a shared, eventually consistent data layer. This
approach lets you grow capacity simply by adding more
machines, with minimal impact on running services.
Finally, vertical or scale-up strategies are built into each
node’s resource manager. When an individual node faces a
heavy load—say, due to CPU-bound analytics or high storage
I/O—the resource manager can hot-allocate extra CPU cores,
memory, or local cache storage, drawing on reserved pools or
bursting into nearby cloud resources. This on-the-fly resource
augmentation keeps single-node performance high, even in the
face of unpredictable workloads.
Together, these four system-level mechanisms—adaptive net-
work traffic management, dynamic membership discovery,
container-based horizontal expansion, and dynamic per-node
resource augmentation—ensure that OASEES can grow and
contract in response to real-world demands without sacrificing
reliability, responsiveness, or operational simplicity.

IX. CONCLUSION

In this work, we present a framework for a decentralised
system that manages a swarm. We then introduce a reference
design for this system, along with performance and scalability
measures to help evaluate it. As a next step, we will test
the OASEES stack in real-world hardware using different use
cases and report the results.
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