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Abstract— Unmanned Aerial Vehicles (UAVs) are 

increasingly deployed in inspection and monitoring missions, yet 

onboard computation and communication impose significant 

energy burdens that limit flight time and operational scope. In 

this work, we introduce a novel, blockchain-enabled 

framework—grounded in the Distributed Autonomous 

Organization (DAO) paradigm—for orchestrating distributed 

analytics across a swarm of UAVs. Leveraging the OASEES 

project’s smart-contract architecture, each drone embeds a 

Metrics Module for real-time power monitoring, a Behavioral 

Module for adaptive control, and a Blockchain Agent that 

autonomously proposes, votes on, and executes collective 

decisions. Three concurrent threads—Proposal Trigger, Voting, 

and Action Execution—enable fully decentralized governance of 

swarm behavior: from detecting critical energy thresholds and 

formulating swarm-wide conservation maneuvers, to executing 

approved strategies across all members. We validate our 

framework in a UAV-based infrastructure inspection scenario, 

employing a YOLOv5 object-detection pipeline to classify four 

corrosion classes on a telecommunications mast under three 

video-capture modalities (short-distance, long-distance, and 

horizontally concatenated streams). Across all configurations, 

our system achieves near-perfect precision, recall, and mean 

Average Precision (mAP50–95 ≈ 0.995), demonstrating both 

the efficacy of distributed workload inference and the feasibility 

of treating a single drone as a multi-feed processor. These results 

underscore the potential of DAO-driven UAV swarms for 

energy-aware, resilient aerial analytics, and pave the way for 

fully decentralized 5G/6G-enabled airborne networks. 
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I. INTRODUCTION 

The emergence of Unmanned Aerial Vehicles (UAVs) in 

various technological domains and sectors as enablers, has 

created different opportunities and needs for the deployment 

of energy efficient and cost-effective devices. UAVs have 

evolved enough to be able to process workloads and perform 

computations while on operation and on-air, but with the 

trade-off of increased energy consumption. Energy is a 
critical aspect in UAV operation as it directly affects flight 

time and duration of the mission, thus every component or 

design decision that saves energy and battery life can greatly 

benefit UAV operation. 

An alternative approach on optimized UAV operation is the 

distribution of workloads among different UAVs that can 

comprise a swarm. Swarm architectures and logic can 

improve UAV operation efficiency and generate new 

opportunities in an emerging market [1]. [2] provides insight 

into ethical aspects and the use cases of UAV swarms in 

various military, civilian, and entertainment applications. 

Studies by Azari and al. [3] explore the deployment of 

terahertz communication for UAV regarding 6G 
communication, sensing localization and channel modelling. 

Finally Jiang et al. [4] offer a comprehensive survey on 

energy-efficient UAV communication in 6G, focusing on 

energy models, designs, and open issues [5]. 

In this paper, a swarm-based approach for UAV distributed 

processing is presented based on the OASEES HE project. 

OASEES proposes a blockchain based approach on swarm 

intelligence and how this can benefit UAV infrastructure 

inspection scenarios leveraging distributed workload 

inference among different swarm UAV members. This 

approach is based on the Distributed Autonomous 

Organization (DAO) paradigm [7], where a group of devices 

can collectively vote on a proposal and take a decision as a 

group. This architectural concept is applied in an actual 

deployment of UAV infrastructure inspection, using object 
detection, for single and collective AI workload processing. 

The paper is organized as follows: Section 2 provides the 

DAO based approach architecture and workflows regarding 

the UAV use case. Section 3 provides the validation and 

evaluation of the object detection service for single UAV and 

swarm-based processing. And finally, section 4 concludes the 

paper and its results. 

 

II. SWARM – DAO INTERACTION 

 

A. Drone Software Architecture 

 

The operational autonomy and decentralized coordination of 

each drone within the swarm is enabled by the underlying 

software architecture. With an emphasis on segmenting the 

software’s functionality into data collection, behavior 

execution, and blockchain interaction, our architecture is 

made to be modular and is comprised of three core 

components: the Metrics Module, the Behavioral Module, 

and the Blockchain Agent. Figure 1 provides a high-level 

overview of their interconnectedness. 

 

Figure 1: Overview of drone software architecture 

 
 

The Metrics Module acts as the main input for the drone's 

decision-making mechanism. Its functionality is to collect 

essential operational data, both individual and 

neighborhood-wide, and subsequently make them available 

via a standardized endpoint. By making these metrics 



programmatically available, the module offers the raw data 

necessary to enable individual, as well as collective 

intelligence, i.e. the drone can assess its own state and, by 

extension, contribute to an aggregated view of the swarm's 

status. For our application, the main measure is Power 

Consumption, as it can offer a direct and real-time 

reflection of both the drone's own sustainability as well as 

the local cluster's energy status 
The Behavioral Module encapsulates the drone's 

application logic. It is implemented as a collection of 

discrete actions or states that define the drone's operational 

capabilities — for instance, “Break Off from the Swarm” 

“Reunite with the Swarm” — where each behavior is 

mapped to a specific endpoint, allowing the drone's 

operational mode to be altered dynamically through API 

calls. Instead of containing the complex decision-making 

logic itself, the Behavioral Module can be perceived as an 

execution engine, effectively differentiating the "how" of an 

action from the "why" that is decided through the DAO. 

The Blockchain Agent is the central part of the architecture, 

integrating the Metrics and Behavioral modules and 

managing all communication with the DAO's smart 

contracts (i.e. Governance, VoteToken, TimeLock, and 

Actions). It is the component that enhances the drone’s 
isolated operation with "DAO-aware" capabilities, enabling 

it to participate in the governance of the swarm. The agent’s 

functionality can also be broken down to the concurrent 

execution of three monitoring threads: 

 
 

Proposal Trigger Thread: This thread continuously polls 

the Metrics Module's endpoint to monitor the drone's 

individual / neighborhood metrics. Upon receiving them, 

predefined rules are applied and the decision-making 

process is kickstarted—for instance, if the average power 

consumption of the drone and its neighbors rises above a 

critical threshold, the agent concludes that a change in 

swarm strategy is necessary. It then formulates and submits 

a proposal to the DAO's Governance contract, suggesting a 

new behavior (e.g., a swarm-wide "Conserve Energy" state). 

 
Voting Thread: This thread monitors the Governance 

contract for any new or active proposals submitted by other 

members of the DAO. When an active proposal is detected, 

the drone can reconsult its Metrics Module as a means to 

assess its current state (relative to the proposal’s objective) 

and make an informed decision. For instance, if a proposal 

suggests a high-energy surveillance maneuver, the drone 

will check its own power levels. Based on this local context, 

it casts its vote for or against the proposal, contributing its 

own assessment to the collective consensus. 

 

Action Execution Thread: This thread monitors the state 

of a dedicated DAO smart contract which reflects the 
swarm’s current status. Whenever a proposal is successfully 

passed and executed by the DAO, a change in the 

aforementioned smart contract’s state directly implies a 

specific change in swarm behavior. The Action Execution 

Thread detects this change, interprets the new state value, 

and makes the corresponding API call to the drone's 

Behavioral Module. This sequence triggers a new individual 

behavior for each of the drones, eventually leading to a shift 

in swarm-wide operations. This closes the loop, translating a 

decentralized decision into a coordinated, real-world action. 
 

B. Execution Sequence in our System 

In order to visualize the end-to-end functionality of our 

software architecture, as well as map its components to our 

proposed system, this subsection presents a series of sequence 

diagrams. These diagrams illustrate the complete lifecycle of 

a decentralized decision, from the initial data- driven trigger 

within a single drone to the synchronized adaptation of the 

entire swarm's behavior. 

 

The diagram in Figure 2 details the operation of the 

Proposal Trigger Thread. The Blockchain Agent 

periodically polls the Metrics Module and parses the 

response. Depending on whether the returned data (i.e. 

power consumption in our case) has crossed a predefined 

threshold, the agent initiates a transaction to the Governance 

smart contract, formally creating a new proposal to alter the 
swarm's behavior. 

 
Figure 3’s diagram illustrates the Voting Thread's workflow. 

Its core application flow is initiated when at least one 
“Active” Proposal is detected. To make an informed 

decision, it again queries its local Metrics Module for a real- 

time assessment of its own power status. Based on this data, 

it casts its vote. 

 

The next diagram (Figure 4) is a depiction of the final stages 

of the DAO's governance process for a successful proposal. 

It shows the calls to queue and subsequently execute the 

proposal via the TimeLock contract, which ultimately 

modifies the state of the "Actions" smart contract (dedicated 

to represent the Swarm’s status). Crucially, this diagram 

also introduces our system’s Human-in-the-Loop (HITL) 

intervention capability. This mechanism provides the option 
for a human operator to directly interact with the system, 

providing a critical layer of oversight and ensuring the 

robustness and safety of the swarm's operation by having the 

ability to override or trigger actions immediately. 

 

The final diagram (Figure 5) visualizes the Action 

Execution Thread, which closes the operational loop. The 

Blockchain Agent constantly monitors the "Actions" smart 

contract for state changes. If the value remains the same, no 

action is taken. However, upon identifying a new value—the 

result of a successfully executed proposal—the agent 

interprets it and makes the corresponding API call to its 

Behavioral Module. This results in the either breaking off 

from the cluster to process the rest of the swarm’s feeds, 

sending the feed to the newly elected “Processing” Drone, 

or reuniting with the rest of the swarm. 



 

Figure 2: Metrics Monitoring and Proposal Creation 

 

 

 
 

 

Figure 3: Drone - DAO Voting Process 



 

Figure 4: Successful Proposal Execution 

 

 

 

 

Figure 5: Change of Swarm Behavior 



III. DETECTION AND CLASSIFICATION 

 
Object detection involves two main issues: classification of 

an object i.e detection and recognition of the object and 

localization of the object i.e. discovery of the location of the 
object in the image by means of bounding boxes. Most object 

detection methods utilize a Convolutional Neural Network 

(CNN). A CNN uses learnable convolutional layers i.e. 

trainable filters or kernels to scan for patterns and learn the 

spatial hierarchies of features in an image, and processes 

images using a grid topology. In this way CNNs are 

responsible for learning to detect objects and predict 

bounding boxes efficiently. Core operations in a CNN are: 

Convolution i.e. feature or object extraction and detection of 

patterns, Batch Normalization i.e. normalization of layer 

inputs after every convolutional layer, Activation i.e. 

introduction of non linearity into the network to model 
complex relationships, Pooling i.e. reduction of spatial 

resolution or downsampling to retain dominant features and 

focus on them, Upsampling i.e. restoration of feature size and 

spatial dimensions for detection at multiple scales. 

Convolutional Layer 

A convolutional layer performs a sliding dot product between 

a kernel (filter) and local patches of the input feature map i.e. 

an image. 

Mathematical Operation: 
 

 
Where: 

• X = input 

• K = kernel 

• Y = output feature map 

These kernels learn to detect edges, textures, parts of objects, 

and entire objects 

 

 
One of the algorithms in which CNNs are employed is 

YOLOv5 [5]. YOLOv5’s convolutional network is divided 

into three main components: Backbone, Neck and Head. All 

the aforementioned CNN operations are performed in Yolov5 

algorithm. Input downsampling in Focus layer with minimal 

information loss is performed in Backbone and Head. 

Convolution with varying kernel sizes to extract spatial 
patterns and objects from images is performed in all layers. 

Batch Normalization follows every convolutional layer. 

Sigmoid-weighted Linear Unit (SiLU) activation which 

introduces non-linearity is used in most convolutional blocks 

for smoother gradient flow and better convergence. C3 

Module or CSP Bottleneck which performs deep feature 

extraction is used since it contains residual flow or residual 

connections and allows better gradient flow, so it improves 

efficiency. Residual flow refers to the use of residual 

connections where a layer’s input is added directly to its 

output. C3 Module is performed in Backbone and Head. 

Spatial Pyramid Pooling – Fast captures multi-scale context 

by pooling at different kernel sizes in order to increase the 

receptive field i.e. region of image and focus on dominant 

features. Spatial Pyramid Pooling – Fast is performed in 

Backbone. Upsampling is performed in the Neck component. 

The Head component of the YOLOv5 architecture is the final 

stage in the model, it takes the already processed feature maps 

from the Neck and performs object detection predictions. It 

applies lightweight convolutional operations to produce 

predicted bounding boxes coordinates, scores counting the 
number of times an object is detected and class probabilities. 

In order to validate the predicted data, in Yolov5 the predicted 

bounding boxes coordinates are compared against the ground 

truth annotation data that consists of bounding boxes 

coordinates and class labels for each box. Hence object 

detection metrics are produced so as to evaluate the algorithm 

performance. These metrics consist of : Precision (P) which 

is the proportion of true positive detections among all positive 

detections. Recall (R) which is the proportion of true 

positives among all ground truth objects. mAP50 which is the 

mean Average Precision(mAP) at Intersection over Union 

(IoU)=0.5. mAP0.5-0.95 which is the mean Average 

Precision(mAP) averaged over multiple IoU thresholds from 

0.5 to 0.95 in steps of 0.05. 

Considering the use case addressed in this paper, the goal is 

to detect and classify corrosion on a metallic 

telecommunications mast. Hence four classes of corrosion 

have been considered: corrosion, moderate corrosion, rust 

and severe corrosion. In order to evaluate the algorithm 

performance, corrosion classification is performed in 3 video 

streams. The first video stream is produced at a shorter 

distance from the mast. The second video stream is produced 

at a longer distance from the mast. In the third case the two 

videos are horizontally concatenated. For all streams 

predicted bounding boxes, scores or instances counting the 

number of times a class occurs, class probabilities and metrics 

are produced. 

Figure 6 shows images with predicted bounding boxes and 

class probabilities generated from the video that was 

produced at a shorter distance from the mast. Table 1 shows 

the number of class instances and metrics. 



  
Figure 6: shorter distance generated images with predicted 
bounding boxes and class probabilities 

Figure 7: longer distance generated images with predicted 
bounding boxes and class probabilities. 

 

 
 

  
Table 1: Class instances and metrics for shorter distance 

generated images. 

 

 

Figure 7 shows images with predicted bounding boxes and 

class probabilities generated from the video that was 

produced at a longer distance from the mast. Table 2 shows 

the number of class instances and metrics. 

Table 2: Class instances and metrics for longer distance generated 
images. 

 

 

Figure 8 shows images with predicted bounding boxes and 

class probabilities generated from the combined i.e. 

horizontally concatenated videos. Table 3 shows the number 

of class instances and metrics. 

Class Images Instances P R 
mAP 

50 

mAP 

50-95 

 
all 

 
9 

 
81 

 
1 

 
1 

 
0.995 

 
0.995 

 
corrosion 

 
9 

 
8 

 
1 

 
1 

 
0.995 

 
0.995 

moderate 

corrosion 

 
9 

 
51 

 
1 

 
1 

 
0.995 

 
0.995 

 
rust 

 
9 

 
14 

 
1 

 
1 

 
0.995 

 
0.995 

severe 

corrosion 

 
9 

 
8 

 
1 

 
1 

 
0.995 

 
0.995 

 

Class Images Instances P R 
mAP5 

0 

mAP5 

0-95 

 
all 

 
9 

 
49 

 
1 

 
1 

 
0.995 

 
0.995 

 
corrosion 

 
9 

 
4 

 
1 

 
1 

 
0.995 

 
0.995 

moderate 

corrosion 

 
9 

 
9 

 
1 

 
1 

 
0.995 

 
0.995 

 
rust 

 
9 

 
15 

 
1 

 
1 

 
0.995 

 
0.995 

severe 

corrosion 

 
9 

 
21 

 
1 

 
1 

 
0.995 

 
0.995 

 



 

 
 

 

 
 

Figure 8: generated images from combined videos with predicted 
bounding boxes and class probabilities. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Table 3: Class instances and metrics for generated images from 
combined videos. 

 
 

Figure 9 shows the total number of class instances that are 

detected. Hence the detected instances of the generated 

images from the combined i.e. horizontally concatenated 

videos are plotted against the sum of detected instances from 

the longer and shorter distance generated images. 

Figure 9: the detected instances of the generated images from the 
combined i.e. horizontally concatenated videos are plotted against 
the sum of detected instances from the longer and shorter distance 

generated images. 

 
 

IV. CONCLUSION 

These findings affirm the utility of the OASEES framework 

in managing the operational demands of 5G/6G-enabled 

UAVs in various situations. The proposed architecture aligns 

with the trend towards network decentralization, empowering 

end-users and enhancing the efficiency and resilience of 

connectivity. The concept of a UAV acting as a flying 5G 

base station underlines a fresh perspective in network 
connectivity solutions. It presents not only a technical 

innovation but also an intriguing business opportunity. Our 

research underscores the immense potential of this approach, 

thereby marking an important milestone in the journey 

towards universal Internet access. 

Based on the outlook of UAV-enabled connectivity solutions, 

it is clear that the OASEES framework will play a vital role. 

The potential of the technology and the opportunities it 

presents warrant further exploration and development. Future 

work in this area will delve deeper into the nuances of the 

proposed architecture and seek ways to improve and optimize 

it for a variety of applications and scenarios. 
 

Considering the use case addressed in this paper, predicted 

bounding boxes using YOLOv5 algorithm were compared to 

the ground truth annotation data. From the comparison and 

according to the metrics : P (precision), R(recall) and mean 

precision mAP, mAP50-95 a very good match was obtained 

between predictions and ground truth data since all these metrics 

were high. Therefore corrosion detection and classification on 

a metallic telecommunications mast is feasible and prediction 

instances are considered trustworthy. Additionally an effort 

was pursued to apply detection algorithms on horizontally 

concatenated videos. The number of detected instances of the 
generated images from the horizontally concatenated videos 

are comparable and similar to the sum of detected instances 

from the longer and shorter distance generated images. 

Difference is due to the fact that when concatenating videos 

the dimensions of the videos change so detection algorithms 

Class Images Instances P R 
mAP 

50 

mAP 

50-95 

 
all 

 
9 

 
100 

 
1 

 
1 

 
0.995 

 
0.995 

 
corrosion 

 
9 

 
9 

 
1 

 
1 

 
0.995 

 
0.995 

moderate 

corrosion 

 
9 

 
52 

 
1 

 
1 

 
0.995 

 
0.995 

 
rust 

 
9 

 
11 

 
1 

 
1 

 
0.995 

 
0.995 

severe 

corrosion 

 
9 

 
28 

 
1 

 
1 

 
0.995 

 
0.995 

 



are expected to yield different numbers of prediction 

instances. However it is demonstrated that object detection on 

concatenated videos is feasible so the detection algorithm can 

be applied on one drone which receives the broadcasted 

videos from all the other drones of the swarm. 
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