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Abstract—Wind energy plays a pivotal role in the global
shift toward sustainable energy systems. However, the main-
tenance of wind turbines remains a significant challenge due
to their distributed nature, harsh environmental exposure, and
the high cost of unplanned downtime. In this work, a novel
architecture for predictive maintenance of wind turbines based
on continuous acoustic monitoring is presented, based upon
OASEES—a decentralized, intelligent, and programmable edge
framework that spans the full computing continuum. The pro-
posed system leverages low-cost recording equipment to cap-
ture turbine-generated sound data, which are processed locally
at the edge using Federated Learning, thus preserving data
privacy and reducing communication overhead. A pre-trained
deep learning model based on wav2vec is fine-tuned to classify
turbine operational states, using labeled acoustic datasets. The
effectiveness of the architecture, which, to the best of the authors’
knowledge, is among the first to utilize the said distributed
learning paradigm for acoustic-based wind turbine predictive
maintenance, is validated in a proof-of-concept experimental
setting using a publicly available relevant dataset, where both
centralized and federated training methods are evaluated. The
results demonstrate promising classification accuracy, with the
federated model achieving over 78% accuracy, closely matching
the centralized baseline.

Index Terms—wind turbines, acoustic data, predictive mainte-
nance, federated learning, decentralized intelligent edge frame-
work, wav2vec, oasees

I. INTRODUCTION

Wind energy has become a cornerstone of modern electrical
grids, playing an increasingly vital role in the global transi-
tion toward sustainable and low-carbon energy systems. As
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concerns about climate change and energy security intensify,
wind energy offers a renewable, cost-effective, and scalable so-
lution to reduce the dependence on fossil fuels. Technological
advances and supportive policy frameworks have enabled wind
energy to grow significantly in the past two decades. In 2024,
wind power supplied approximately 8.1% of global electricity,
reaching more than 2,494 TWh, with cumulative installed
capacity exceeding 1,136 GW [1]. Integrating wind-produced
energy into electrical grids presents both opportunities and
challenges, especially w.r.t. intermittency, grid stability, as well
as the need for enhanced storage and forecasting systems.
Understanding the role and impact of wind energy within
current power systems is essential for designing resilient and
future-proof electricity infrastructures.

Despite their benefits, the maintenance of wind turbines
presents significant challenges due to their remote locations,
high operational loads, and exposure to harsh environmen-
tal conditions. Traditional maintenance strategies, such as
scheduled or reactive maintenance, often lead to increased
downtime and higher operational costs. In response, predictive
maintenance strategies that rely on continuous monitoring and
advanced analytics to anticipate failures before they occur,
have started to be adopted instead. Among them, acoustic
measurements are gaining traction, as through the analysis
of the subtle sounds and acoustic emissions generated by
turbine components, such as gearboxes, bearings, and even
blades, researchers and operators can detect early signs of
wear, fatigue, or damage. This non-contact and non-intrusive
method provides valuable insights into the health of critical
components, enabling timely interventions and optimizing
maintenance schedules, thereby reducing operational costs and



maximizing turbine availability. Recent research has demon-
strated the effectiveness of acoustic-based condition monitor-
ing systems in identifying gear and bearing defects under
variable load conditions [2], [3].

In principle, wind turbines generate vast amounts of sensor
data (acoustic, vibration, temperature, etc), often located in
geographically dispersed and bandwidth-limited environments.
Therefore, transmitting raw data to a centralized server and
then training machine learning-based (ML) or deep learning-
based (DL) anomaly detection models becomes impractical
and also raises security issues. In this respect, decentralized
computing solutions at the intelligent edge provide a viable
alternative, as they address privacy and cybersecurity con-
cerns by keeping sensitive operational data on-site. One such
promising methodology is Federated Learning (FL) which,
instead of transmitting raw data to a centralized server, allows
local edge devices (e.g., embedded controllers or nearby
gateways) to train machine learning models on-site and share
only model updates with a central aggregator. In this way,
individual wind turbines or local wind farm edge devices train
predictive maintenance models using their own proprietary
data, thereby significantly reducing data transmission needs,
lowering latency for real-time anomaly detection and enhanc-
ing data security and compliance. Furthermore, by collabora-
tively training on diverse data originating from various turbines
operating under different environmental conditions, the global
FL model can enhance its generalization ability in predicting
complex failure patterns, ultimately optimizing maintenance
schedules and extending turbine lifespan across an entire fleet
[4].

A robust way for the efficient deployment of FL algorithms,
particularly in complex and distributed environments like wind
farms, smart grids, or industrial IoT systems, is through
decentralized, intelligent, and programmable edge frameworks
designed for swarm architectures. These frameworks leverage
the collaborative and self-organizing nature of swarm intel-
ligence—where multiple edge nodes operate autonomously
yet cooperatively—to support dynamic workload distribution,
fault tolerance, and real-time decision-making. By embedding
intelligence into edge nodes, such architectures allow local
processing and learning while maintaining seamless coor-
dination for global model convergence. Programmability at
the edge enables flexible orchestration of FL tasks, such as
adaptive client selection, privacy-preserving aggregation, and
context-aware optimization.

In the current work, the Open autonomous programmable
cloud apps & smart sensors (OASEES) framework [S] has
been selected as the decentralized, edge framework of choice,
as it embraces the entire computing continuum, including
central infrastructures (public clouds and networks), as well as
smart devices. From the data scientist and engineer viewpoint,
OASEES provides user-friendly abstractions (notebooks, sim-
plified administration interfaces, graphical workflow designers,
etc.) to data experts, so that the latter can concentrate on the
management of the data and the selection and optimization
of the ML/AI algorithms, rather than on the management
of the physical and virtual resources which are needed and
committed.

Upon OASEES & exploiting its SDK, we build and evaluate
a DL model for the predictive maintenance of wind turbines.
Edge devices record acoustic data on-site (near the wind
turbines) and process them locally (at the edge), through a
FL training procedure, which pushes gradients to a centralized
aggregator. Model performance is then compared to central-
ized training and the corresponding conclusions are drawn.
The rest of the paper is organized as follows; Section II
overviews related works w.r.t. the objectives of the current
contribution. Section III outlines the proposed methodology,
while Section IV presents the obtained experimental results,
as well as discussing their implications. Finally, Section V
concludes the paper.

II. RELATED WORK

Fault detection in wind turbine operation has emerged as a
highly active and evolving area of research. Most existing ap-
proaches are grounded in the analysis of condition monitoring
(CM) data and operational data, particularly those collected via
Supervisory Control and Data Acquisition (SCADA) systems.
These datasets are typically derived from a variety of monitor-
ing signals directly obtained from the turbine, such as vibration
measurements, temperature readings, rotational speed, power
output, and other performance indicators. Leveraging such data
enables the early identification of abnormal patterns that may
indicate developing faults.

In this context, the literature presents a broad range of
computational models designed to process and interpret these
high-dimensional, heterogeneous signals. Among the most
notable are deep autoencoders [6], which can learn compact
representations of normal turbine behavior and detect devia-
tions indicative of faults; Gaussian process models [7], which
offer probabilistic predictions and uncertainty quantification;
and ensemble learning techniques [8], which combine multiple
models to enhance robustness and accuracy. Furthermore,
hybrid architectures have been explored, such as the integra-
tion of long short-term memory (LSTM) networks—capable
of capturing temporal dependencies in sequential data—with
autoencoder structures for improved anomaly detection perfor-
mance [9].

Lately, approaches utilizing acoustic signals captured by
audio equipment in the vicinity of the wind turbines have also
emerged. By converting raw audio recordings from turbine
operation into spectrograms, these methods transform time-
series data into rich, two-dimensional visual representations
of frequency and amplitude variations over time. This enables
the application of well-established image processing and com-
puter vision techniques, such as convolutional neural networks
(CNNGs) [10], to identify characteristic patterns associated with
mechanical faults or component degradation.

Beyond conventional CNNs, more sophisticated deep learn-
ing architectures have been investigated to improve detec-
tion accuracy and generalization across different turbines and
operating conditions. Models such as MobileNet, ResNet,
and VGG have been adapted for spectrogram-based fault
classification, taking advantage of their ability to learn hierar-
chical and high-level feature representations while balancing
computational efficiency [11].



In addition to these, hybrid and attention-based architec-
tures have emerged as powerful alternatives. For example,
an attention-enhanced convolutional recurrent neural network
(ACRNN) has been proposed to classify known blade failure
modes, effectively combining CNN layers for spatial feature
extraction with recurrent layers to capture temporal depen-
dencies in the acoustic signal [12]. The attention mechanism
further allows the model to focus on the most informative
segments of the input, improving interpretability and per-
formance. To address scenarios where abnormal or faulty
operation data is scarce or unavailable, this approach has been
complemented with a normal-encoder network, enabling semi-
supervised learning and anomaly detection through modeling
of normal operational behavior.

A persistent challenge in the wind energy sector lies in
the restricted exchange of operational and performance data
between different stakeholders—such as energy companies,
wind farm operators, and original equipment manufacturers
(OEMs). These data include mechanical and aerodynamic
properties of turbines, as well as their performance metrics
under varying weather and environmental conditions. Such
restrictions are often due to commercial confidentiality, intel-
lectual property protection, and regulatory constraints, which
hinder the development of collaborative, data-driven solutions.

In the domain of fault detection, FL has already demon-
strated potential. For example, it has been applied to blade
icing detection using SCADA data, enabling real-time, online
detection methods that achieve a high rate of success without
requiring centralized datasets cittCHENG2022124441. Sim-
ilarly, FL has been used to train long short-term memory
(LSTM) models capable of learning a wind turbine’s normal
operating patterns from historical SCADA data, which can
then be leveraged for anomaly detection [14].

Beyond failure detection, FL. has also been explored in
short-term wind power forecasting, allowing multiple wind
farms to collaboratively improve prediction accuracy for en-
ergy production while maintaining data privacy [15]. However,
despite these advances, no studies to date have investigated the
application of FL to anomaly detection or blade failure clas-
sification using acoustic data — to the best of our knowledge
at least. In this respect, the current work is among the first to
explore the potential of FL techniques in acoustic-based wind
turbine predictive maintenance.

III. METHODOLOGY

This section presents in more detail the OASEES framework
[5]; the decentralized, edge solution used for DL-based wind
turbine predictive maintenance (Section III-A). Following,
Section III-B outlines the actual use of the aforementioned
framework for a DL-based predictive maintenance task on
wind turbines.

A. The OASEES Framework

The OASEES framework [5] proposes a decentralized, intel-
ligent, and programmable edge architecture for swarm-based
applications, built upon the Decentralized Autonomous Orga-
nization (DAO) paradigm and integrating Human-in-the-Loop
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Fig. 1. OASEES SDK Programmability Stack

(HITL) mechanisms for effective decision-making. It empha-
sizes open, secure tools for swarm orchestration across di-
verse fields, while addressing critical challenges like portable,
privacy-preserving identity federation aligned with GAIA-X
[16] and International Data Spaces Association (IDSA) [17]
standards. Unlike existing platforms that focus narrowly on
edge infrastructure management, OASEES envisions a holistic
approach spanning the full compute continuum—from cloud
to edge to smart devices—while supporting heterogeneous
accelerators (e.g., Graphical Processing Units, Neural Pro-
cessing Units, Spiking Neural Networks, Quantum). It also
targets usability gaps by introducing intuitive interfaces for
data scientists and engineers, akin to those in public cloud
environments. Furthermore, OASEES prioritizes dynamic se-
curity and integrity verification in multi-actor, rapidly evolving
edge contexts, ensuring privacy and reliability throughout the
infrastructure.

The OASEES framework is accessed through its SDK
(Figure 1), aiming to provide a user-friendly environment
for developers and engineers to access and program swarm
clusters of devices for different applications and services. The
OASEES SDK is primarily accessed via a graphical user in-
terface based on Jupyter [18], offering a Python notebook-like
experience and facilitating MLOps capabilities. The opera-
tional basis of the SDK is split among three base programming
components, tailored and aimed for swarm-based deployments
and architectures; i) the Rapid Development Kit (RDK), ii)
the CI/CD MLOps and iii) the Quantum DevKit — Eclipse
Qrisp [19]. The SDK also offers external APIs and interfaces
to publish OASEES developed data assets to the European
Open Science Cloud (EOSC) [20] and GAIA-X [16].

The OASEES RDK is basically, a suite of tools that enables
developers to create edge applications tailored to their needs
and the targeted edge device. It implements a cloud native
approach, supporting different technologies (i.e., K8s, K3s and
KubeEdge) depending on the needs and specifications of the



scenario, and the limitations of the swarm devices. The CI/CD
MLOps component can support the full lifecycle of AI/ML
operations and proceeds one step further to package accord-
ingly the model and algorithm and place them in the proper
device to be executed upon. Qrisp [19] is an open-source
python framework for high-level programming of Quantum
computers, and in the context of the OASEES framework,
specific swarm related functions are bridged and executed
through the OASEES SDK environment for particular scenar-
ios. Last but not least, the external APIs offer the developer the
option to publish their asset, mode, algorithm to EOSC and/or
GAIA-X in a seamless manner, with the SDK undertaking all
the underlying necessary steps to establish a connection and
execute the required actions.

B. Predictive Maintenance

Fig. 2. Generic Acoustic Monitoring System

The predictive maintenance task that is going to be
implemented is the Blade Acoustic Monitoring System
(BAMS), which is portable, non-intrusive and manufacturer-
independent. Using the recording equipment of Figure 2 to
capture acoustic data (sounds), BAMS can listen to the wind
turbine, acquire the acoustic signals produced when the wind
interacts with the blades, and detect and identify faults in them,
thus improving the performance and operational reliability
of the wind turbine. This early detection also allows the
optimization of energy production, extending the useful life
of the blades. BAMS can detect abnormal operations in the
blades such as structural failures, wear, ice, corrosion, or dirt.

The recording equipment (Figure 2) is a general-purpose
portable monitoring system, assembled using low-cost compo-
nents, since expensive calibrated sound pressure level meters

Fig. 3. Acoustic Monitoring System under a Wind Turbine

are not required for the task at hand. It is comprised of a
microphone, a USB audio interface, a solar-powered battery,
USB data storage and a Single Board Computer which pro-
cesses the audio data. This device is installed near the base of
the wind turbine, as illustrated in Figure 3.

BAMS functions as an IoT device in swarm mode, allowing
the simultaneous capture and processing of data from a con-
siderable number of wind turbines, resulting in the creation of
a network. This is illustrated in Figure 4, which depicts the
architectural overview of the edge services deployed in the
context of the wind farm to enable the distributed MLOps.
The key component of the architecture is the IoT device
(agent) residing at the network edge (wind turbine location),
as depicted on the block-diagram on the left hand-side of
Figure 4. The sound recorded from the USB audio interface is
sent to a message bus enabled by the MQTT protocol, which
makes audio chunks available for subscription in real time
from different applications. Those chunks are stored locally on
the agent and they can be directly accessed by the FL client,
which performs local model training, sending gradients and
model parameter updates to the FL server, residing at the wind
farm station. Data are exchanged via a secure communication
channel (SSL-enabled).

The MQTT client also feeds data to subscribed analytics
services at the edge device, such as the anomaly detec-
tion module, which performs anomaly detection and failure
classification in real-time. Furthermore, feature extraction is
performed on the audio data in order to obtain relevant
features for the training of additional ML algorithms. Data
generated from the audio chunks and the extracted features
can be saved in local storage for further offline analysis and
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Fig. 4. Wind Farm distributed monitoring architecture within OASEES

dataset generation. Finally, the platforms offer the possibility
to telemetry applications, to directly communicate with the
edge device to inspect data and check the wind turbine blade
health in real time.

The Edge Server (right hand-side of Figure 4) resides at
the main premises of the wind farm station and communi-
cates, through the OASEES framework, with all edge devices
near the turbines. Apart from hosting the FL server, which
aggregates model updates from all clients, the server provides
a connection to the Interplanetary File System (IPFS). IPFS
can hold trained models, which may be monetized and made
available to other users of the framework, as well as data. The
end user (engineer and/or data scientist) accesses the frame-
work through this master node. S/he can deploy ML and FL
templates using Jupyter notebooks or the OASEES SDK CLI
utilities. The researcher may deploy training workloads after
selecting predefined templates, devices, datasets and training
parameters. Additionally, s/he may write and deploy his/her
own models from scratch. Telemetry and UI capabilities permit
the overall monitoring of the training procedure.

The whole architecture is fully modular and can be adapted
to work in any wind farm or an array of wind farms. There
is also the possibility of directly storing the collected data on
the IPFS (via the master node) to facilitate data analysis when
network or storage limitations are present.

IV. EXPERIMENTAL PROCEDURE

Non-disclosure agreements do not permit us to report results
of the deployed architecture on actual wind farms, so we
will perform a slightly different but fully relevant experiment.
We will store a compatible dataset (Section IV-A) on the
IPFS and we will subsequently train a DL model (Section
IV-B), simplifying the architecture of Figure 4 (Section IV-C).
Finally, we will discuss the obtained results (Section IV-D).

A. Dataset

The WEA-Acceptance Data (version 1.0) [21], is a dataset
comprised of acoustic, meteorological and operational wind
turbine measurements. It has been compiled by researchers
at the Leibniz University Hannover, who performed 5 mea-
surements campaigns at an undisclosed location in northern
Germany, characterized by homogenous, flat land of agricul-
tural use. Out of the aforementioned campaigns, only data
from the 5" campaign were publicly released, comprised
of measurements spanning the month of April (again, not
disclosing the year). Even though measurements contained
acoustic, as well as meteorological data, in order to be aligned
with the architecture presented in Section III-B, only the
former were considered.

Acoustic measurements were captured by 3 different micro-
phones, placed at the vicinity of three different wind turbines at
the aforementioned agricultural location in northern Germany,
surrounded by fields & separated by ditches, which can contain



water. The dataset was split in 30 distinct files, one for each
day of April. In our experiments, we used the first 24 days as
the training set (80% of the dataset) and the last 6 as the test
set (20% of the dataset).

Recordings for each day are stored in a single archive, com-
posed of 3 subfolders (one for each location). Every subfolder
includes 48 audio files in FLAC format, containing half-an-
hour recordings for that day and for the specific microphone.
The only exception to this rule are the recordings for the 22"
of April, where a number of recordings are missing. Finally,
a CSV file accommodates information about the operational
status of the wind turbines (target variable) in 10-minute, non-
overlapping intervals. Therefore, the audio was segmented into
10-minute segments, aligned with the target variable. No other
augmentation or filtering technique has been employed.

The operational status can take five distinct labels, turning
the predictive maintenance task into a classification problem in
this case. These are i) the STOP label, when the power output
of the farm is equal to zero, ii) the NORMAL label, when
the farm is operating smoothly and produces power at the
desired level, iii) the PARTIAL STOP, which denotes the state
in-between STOP and NORMAL in which the turbine starts
running, or, in reverse, in which the turbine stops running, but
momentum has it still moving, iv) the CURTAILMENT label,
when the turbines produces energy below the desired threshold
and v) the PARTIAL CURTAILMENT label, which, similar to
the PARTIAL STOP; this state describes the change between
CURTAILMENT and NORMAL operation, during which the
blade pitch is regulated and the power output values change
to the values expected for the given wind speed. Finally, the
OUTLIER label is for those data points that were not classified
in one of the preceding categories and have a “power output”
value that is much smaller than the value of the manufacturer’s
power curve for the specific wind speed.

B. Model

Since, to the best of the authors’ knowledge, no publicly
available DL-based model trained on wind turbine acoustic
data exists, the decision was made to pre-train an existing
model than train a new one from scratch. This decision
was bolstered by the fact that, in wind turbine predictive
maintenance, collecting labeled fault data is expensive and
rare (wind turbines spend most of their time in a healthy
state). Therefore, by starting from pretrained representations,
only a small amount of task-specific labeled data is needed
to fine-tune a downstream fault detection model, significantly
lowering data annotation costs.

For this reason, the popular wave2vec speech recognition
model [22] has been selected, which was further fine-tuned
on the dataset described in Section IV-A. Wav2vec transforms
raw audio into compact representations (codes) that can be
used with existing audio recognition models. It is trained
directly on large amounts of unlabeled audio, learning to
map raw waveforms into compact, information-rich vector
representations. In this respect, the model learns how to extract
fundamental audio patterns—such as frequency structures and
noise characteristics—that are present in many acoustic do-
mains (and not just speech). In addition, wav2vec’s pretraining

involves augmentation with noise and masking, making its
features more resilient to environmental variations—important
for wind turbines that operate in noisy, changing outdoor
conditions where wind, rain, and background noise can mask
fault-related sounds.

One key challenge was handling the continuous nature
of audio, which wav2vec addresses using a self-supervised
training approach inspired by word2vec. The architecture in-
cludes two stacked convolutional neural networks; an encoder
that processes 30 ms segments of audio and a context net-
work that builds longer-range representations. During training,
wav2vec introduces distractor samples—short segments of au-
dio swapped with others—and tasks the model with identifying
the correct version. This challenge is repeated across each
10-second clip, with increasing difficulty as the model also
predicts upcoming audio changes in 10 ms intervals.

C. Experimental Architecture

Figure 5 illustrates the experimental, swarm architecture
used in the experiments. It is directly derived from Figure
4, with the main difference being that no node-clients exist.
Data are stored at the IPFS, with the three different folders
designating different wind turbine locations and therefore
using them as separate data sources in the FL training scenario.
Additionally, in this proof-of-concept (POC) implementation
the swarm coordination abilities and HITL features of the
OASEES SDK are not fully exploited.

Otherwise, the model training procedure remains the same;
the developers select the ML project to deploy training work-
loads for, also selecting which node(s) and specific compatible
dataset they want to assign the workload to. Additionally, they
also configure the training parameters (Steps 1 & 2 of Figure
5)

A call is made to the node that the SDK Manager’s backend
resides in, to initiate the training procedure, which deploys the
training workloads on the specified nodes via the Kubernetes
API. Each node retrieves the project folder and the datasets
from IPFS (Step 3 of Figure 5) and the client nodes execute
their local model’s training (Step 4 of Figure 5). Local model
parameters are sent to the server node and are aggregated into
the full model (Step 5 of Figure 5). Upon finishing the training
process, the server node stores the final model on IPFS (Step
6 of Figure 5).

D. Results

Table I presents the key training parameters and the cor-
responding performance results for the deep learning model
described in Section IV-B, trained in a centralized setting
outside of the OASEES framework. In this setup, all training
data were consolidated on a single node, allowing conventional
training without the constraints of distributed learning. The
hyperparameters listed, optimized through extensive tuning,
include the number of training epochs, the learning rate and
the choice of the optimizer. In particular, the model achieved
an accuracy of 85%, which is a promising result given that
it was originally pre-trained on a completely unrelated dataset
designed for speech recognition tasks. This outcome highlights
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the adaptability and potential of transfer learning approaches,
even when applied to domain-shifted problems such as wind
turbine acoustic signal classification.

TABLE I
TRAINING PARAMETERS AND RESULTS FOR CENTRALIZED TRAINING

Epochs 10
Learning Rate 3 x 10~°
Optimizer Adam

85%

Accuracy

Table II outlines the selected hyperparameters and config-
uration used for the FL scenario. To ensure a fair compar-
ison with the centralized training approach, the same core
hyperparameters, such as learning rate and optimizer, were
retained in both sets. The number of FL clients participating
was set to three, corresponding to the three distinct microphone
locations in the dataset, reflecting a realistic edge deployment,
as described in Section III-B. For this POC implementation,
the basic Federated Averaging (FedAvg) algorithm [23] was
used as the aggregation strategy. In this approach, each client
independently trains the model on its local data and periodi-
cally sends updated model parameters to a central aggregator.
The aggregator then computes the average of these parameters
across all clients to form a new global model. Although
FedAvg offers simplicity and ease of implementation, it does
not account for variations in data distribution or client con-
tribution, making it a useful baseline for evaluating the initial
performance and convergence behavior of FL in this context.

Table III illustrates the progression of the loss function and
the accuracy metric over the course of the three FL training
rounds. Initially, the model exhibits relatively high loss and

P

TABLE I
TRAINING PARAMETERS FOR FEDERATED LEARNING

Training Rounds 3
Learning Rate 3x10°°
Optimizer Adam
Clients 3
Aggregation Strategy  Averaging

low accuracy, which is expected given the limited training
time and the decentralized nature of the setup. However, as
the training rounds advance, a clear trend of performance
improvement emerges. By the third round, the loss has de-
creased substantially to 0.527, while the accuracy has risen
to 78.57%. This steady improvement indicates that the model
is successfully learning from the decentralized data sources
and gradually converging towards a more accurate global
representation. Notably, the final FL-based accuracy is quite
close to the 85% achieved in the centralized training scenario,
demonstrating the viability of FL for audio-based predictive
maintenance, despite its inherent challenges, such as non-IID
data and limited communication rounds. These results are
particularly promising, as they were obtained using a basic
averaging strategy for aggregation and without further fine-
tuning of the model architecture specifically for FL.

V. CONCLUSIONS

In this work, a novel architecture for the predictive mainte-
nance of wind turbines has been presented, based on acoustic
signals, captured by microphones positioned in close proximity
to the turbines. To the best of our knowledge, the proposed



TABLE III
L0SS AND ACCURACY VALUES FOR FL TRAINING ROUNDS

Training Round Loss  Accuracy
1 0.627 61.90%
2 0.551 73.81%
3 0.527 78.57%

methodology is among the first to harness the potential of FL
in acoustic-based wind turbine predictive maintenance.

The core elements of the described system are built upon
the OASEES framework; a decentralized and programmable
edge framework that spans the entire computing continuum,
from central cloud infrastructures to smart edge devices. This
framework has been shown to be particularly well-suited for
the challenges of the task at hand, as it offers capabilities
for continuous audio stream ingestion, real-time preprocessing,
localized storage for historical data analysis and decentralized
training of DL models directly at the edge, using the FL
paradigm. To validate the effectiveness of the proposed system,
a POC implementation was carried out using a reference
dataset, demonstrating the architecture’s efficiency, scalability
and suitability for real-world deployment in wind turbine
monitoring scenarios.

Of course, the methodology and results presented thus far
are still preliminary and serve primarily as a foundational
POC. The DL model integrated within the proposed architec-
ture, which performs audio-based classification of wind turbine
acoustical signals, remains at an early stage of development.
While the current implementation demonstrates the technical
feasibility of the approach, significant work is still required
to refine the model architecture, optimize hyperparameters,
and enhance its robustness in real-world conditions. Most
importantly, the model must be pretrained on large and diverse
datasets of labeled wind turbine acoustic signals, capturing a
wide range of operational states and potential failure modes.
This will enable the model to learn discriminative features
that are essential for accurate classification and early fault
detection. In future iterations, the inclusion of self-supervised
pretraining techniques or transfer learning from related audio
domains could be explored to address the challenge of limited
labeled data. Additionally, further experiments and evaluations
under realistic deployment scenarios will be necessary to
assess generalization ability, latency, and energy efficiency at
the edge.

Finally, to fully harness the potential of FL in the context of
audio-based classification of wind turbine acoustical signals,
further exploration of more complex aggregation strategies
is essential. While the current implementation relies on the
standard FedAvg approach, this method does not adequately
address the inherent challenges of decentralized audio data,
such as non-independent and identically distributed (non-IID)
data distributions, varying data quality, and heterogeneous
client resources. Therefore, more advanced and adaptive ag-
gregation strategies should be considered, like (federated)
Adagrad or Adam. The aforementioned techniques can help
mitigate issues related to client drift and imbalanced data
contributions, ultimately improving convergence stability and

model performance. Overall, the exploration of diverse and
intelligent aggregation strategies is a critical step toward real-
izing scalable, robust, and efficient FL for real-world predictive
maintenance applications in the wind energy sector.
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